”

s

F/6 20/11

AD=AO49 676 CALIFORNIA UNIV LOS ANGELES DEPT OF MATERIALS
STRESS CONCENTRATION DUE TO AN OBLATE SPHEROIDAL INCLUSION.(U)
DEC 77 H SHI!ATAr K ONO NO0O14=75-C=0889
UNCLASSIFIED NL

END

DATE
FILMED

2 =78

Doc




’ e

G/ () *

w Office val Research
N 15)—ee—————7
q‘ Contract Ne7/ Ng@R14~75-C-0889 (
c NR 031-781
= o
7
STRESS CONCENTRATION DUE TO AN OBLATE SPHEROIDAL INCLUSION, /
A £ o 7 ; R {
S
Q.
o
‘ O
Ll
o el
S o
[ o Y it School of Engineering and Applied Science
- University of California
T g Los Angeles, California 90024

@’Tk;n'{ld

¥ -?%. ( T DISTAIBUTION STATENET K|

Approved for public xsbaJ :
Distributien Unlimited ;




R T ———

|

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BRY O e S Pl
' REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ONR Technical Report # 5 —
4 TI(TLE (end Subtitie) S. TYPE OF REPORT & PERIOD COVERED
Stress Concentration Due to an Oblate Technical
Spmm'ldal InCIUSIOn / 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S) % CONTRACT OR GRANT NUMBER(s)

Mamoru Shibata and Kanji Ono N00014-75-C~0889

NR 031-871

9 PERFORMING ORGANIZATION NAME AND ADORESS

10. Pkoaﬂ.ﬂgo!.L..lﬂT'r ’ROJ(!C? TASK
Materials Department, School of Engineering i i
6531-Boelter Hall, University of Ca.l:tfornla._____,

Los Angeles, Callfor'nm 90024

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Metallurgy 1077 —

Office of Naval Research, 800 N. Quincy Street [73. WumBER OF PAGES
Arlington, Virginia 22217 25

14

MONITORING AGENCY NAME & ADODRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of thie report)

unclassified

a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

Unlimited [ DISTRIBUTION STATEMENT A

Approved for public release
Distributien Unlimited

17.

DISTRIBUTION STATEMENT (of the abetract entered In Block 20, 11 different from Report)

SUPPLEMENTARY NOTES

KEY WORDS (Continue on reveree eide If y and identify by block der)
Internal Stresses Elasticity Theory
Inclusion Inhomogeneity

Non-Deformable Particle

ABSTRACY (Continue on reverse eide I and ldentily by dlock number)

See Following Page

ol A

<

DD ,"5n% 1473  eoimion oF 1 nOv 68 18 ORsOLETR

8/N 0102 LF 0144601
SECURITY CLASSIFICATION O P A .




SUMMARY

The stress concentration of an oblate spheroidal inclusion parallel

to the stress and deformation axis is obtained by using Eshelby theory.

This is complementary to our previous study, in which stress concentration

is analyzed for an oblate spherovidal inclusion normal to the stress and
deformation axis. Effects of the elastic stiffness and the aspect ratio

of the inclusion on the stress concentration are examined in detail. The

internal stresses inside the inclusion and at the matrix~-inclusion boundary

are calculated considering inhomogeneity and plastic deformation effects.

Stress concentrations at graphite flakes and nodules in cast iron are dis-

cussed.
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STRESS CONCENTRATION DUE TO AN OBLATE SPHEROIDAL INCLUSION

1. INTRODUCTION

A good deal of attention has been given to stress concentrations
produced by holes and cavities in materials. However, only limited efforts
have been devoted to effects of inlcusions, inside which elastic stiffnesses
differ from those of the surrounding matrix. In our previous paper [1] (to
be referred to as Paper I), stress concentrations in materials bearing an
oblate spheroidal inclusion were studied by using Eshelby theory [2]. Three
cases were considered: (1) misfit effect due to an isotropic dilatational
strain; (2) inhomogeneity effect due to a difference in elastic stiffnesses
of the inclusion and matrix; (3) plastic deformation effect due to the
presence of a non-deformable inclusion in the matrix, which is plastically
deformed. The influences of the aspect ratio and elastic stiffness of the
inclusion were evaluated. In analyzing the inhomogeneity and plastic deforma-

tion effects, we restricted our attention to the case of the oblate spheroidal

inclusion having its broad faces normal to the direction of the extermal
stress and plastic deformation (N configuration). In this paper, we wish to
extend our calculation to the oblate spheroidal inclusion, which is parallel
to the extermal stress and plastic deformation axis (P configuration).
Results of the calcualtion for the misfit effect were unaffected by this
change in orientation, but those for two other effects were quite different.
The internal stresses inside the inclusion and at the matrix-inclusion
boundary were obtained as a function of the aspect ratio and differences in
the elastic moduli of the matrix and inclusion.

2. INCLUSION
Suppose Xl, x2 and X, be a Cartesian coordinate system. At its origin
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is an oblate spheroidal inclusion (cf. Fig. 1), of which boundary is given

as

Bral + (8 + Xl =1, ey
The aspect ratic of the inclusion is defined by k = a/c.

The matrix and inclusion are assumed to be elastically isotropic. E
and E* are the Young's moduli, u and u* are the shear moduli, and v and v¥
are Poisson's ratios of the matrix and inclusion, respectively. In the
following calculations, the shear modulus ratio, m, defined by m = u*/u ,
is employed in order to describe effects of a differing elastic constant
of the inclusion. To simplify the presentation of results, Poisson's
ratios of matrix and inclusion are assumed to be equal to 1/3, for which m
is also equal to E#/E. This is reasocnable for most of the practical

applications.

3. INTERNAL STRESSES IN AND AROUND THE INCLUSION

Eshelby [2] developed a method for obtaining the intermal stress of an
ellipsoidal inclusion in an infinite isotropic matrix. Eigen strain inside
the inclusion is uniform. He also gave an equation to evaluate the inhomo-
geneity effect under a uniform external stress field by using the concept
of an equivalent inclusion. As in Paper I, his theory is used here to
obtain the internal stresses in and around the inclusion.

In Paper I, only two independent principal stress components needed to
be considered. In this study, however, all three are required since one of
the geometrical symmetries is lost. This change adds one more unknown

component of the eigen strain ezj of the equivalent inclusion in comparison
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to the previous study. After solving the proper similtaneous equations with
respect to e}'j, the principal components of internal stress within the in-
clusion, c{l, °§2 ard °§3’ can be obtained as a function of the aspect ratio
k and the shear modulus ratio m = y*/u. Internal stress just outside of the
inclusion, Ji‘.lj’ can also be obtained, but is a function of the position at
the boundary. We will present primarily the results of °§.11 at the equator
point A3 along x3 axis or (0, 0, ¢) (cf. Fig. 1).

Two effects are considered in this study, since internal stresses due
to misfit effect can be obtained for the present geometry by interchanging
the indices 1 and 3 in the results presented in Paper I:

1) Inhomogeneity effect: When uniaxial external stress oA is applied
along X3 axis at infinity, it produces elastic strain, e‘i\., given by

J
-V 0 0
A A
eij ={ 0 -v 0 e (2)
g D 1

where eA is equal to oA/E.

2) Plastic deformation effect: When the inclusion is non-deformable
plastically, and the surrounding matrix undergoes plastic deformation along
)(3 axis by the amount of ep’ internal stresses in and around the inclusion
are to be evaluated as a function of €p following the method of Tanaka and
Mori [3]. In this case, the eigen strain e? inside the inclusion is

J
7 0 0
™. 1 .
0 0 -1
'y




4. RESULTS

4.1 Inhomogeneity Effect

Results of internal stress evaluation due to inhomogeneity effect for seven
different m values are shown in Figs. 2 to 4. All the stresses are nor-

malized by the applied stress dA . When inhomogeneity effect is absent

% I S e I -
(m = 1), we have (oll)inh = (022)1':1}1 = 0and (033):th = GA regardless of
the aspect ratio k, as expected. As k approaches zero, (O{l)inh and (c!:gz):.mh
vanish regardless of m, whereas (oI ) approaches an asymptotic values of mc!A .

33"inh

Figure 2 indicates that the magnitude of stress normal to the broad face
of the inclusion is generally small, and that the sign of (oil) o changes at
I .
ll) inh becames tensile
axis. For inclusions withm > 1,

k = 0.37. For elastically hard inclusion withm> 1, (¢
for thin discs under tensile loading along X3
compressive (tensile) stress develops along X, axis when tensile (compressive)
external stress is applied along Xy axis (cf. Fig. 3). The magnitude of the
compressive stress depends on both k and m. For k = 0.07 and m = 10, the
ratio (°§2)inh/°A reaches -0.473. Results for (oga)inh shown in Fig. 4 indi-
cate no unexpected behavior. The approach to the asymptotic value is, however,
much slower for larger m values than for smaller ones.

For inhomogeneity effect at the boundary, (ol;l) inh at the equator point
A, is presented in Fig. 5. The stress (as normalized by o®) is positive when
m is greater than unity and increases with decreasing k or increasing m. For m
less unity, (02.11) e and oA have opposite signs. It is important to note that
an elastically hard plate-like inclusion parallel to the tensile stress axis
produce significant tensile stress at the edge normal to the plane of the
inclusion. On the other hand, the tensile stress developed at the edge of
an elastically soft inclusion under compressive loading is much smaller in

mmimdeincouparisontoa“‘.
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4.2 Plastic Deformation Effect

Results of internal stress in the inclusion due to plastic deformation
effect (oij)p are shown in Figs. 6 to 8. Here, the stresses are normalized
by E*ep, where E* is the Young's modulus of the inclusion and ep is the
amount of plastic deformation along the x3 axis. For a given k, a smaller
m value produces larger magnitude of all principal stresses in general.

Both (c{l)p and (dgz)p have the opposite sign compared to ep; i.e., these
stresses are conpressive when tensile plastic deformation is produced in the
matrix. Their magnitudes are smaller for larger m and approach asymptotic
values of zero and -0.19 with vanishing k, respectively. (0§3)p is shown in
Fig. 8. Its magnitude is greater for smaller m and approaches the asymptotic
value of 0.9375 E*ep with decreasing k.

For plastic deformation effect at the boundary, (ogfl)p at the equator
point Aq is presented in Fig. 9. Here, the stress is normalized by Eep
where E is the Young's modulus of the matrix. The effect of the modulus
ratio m becomes larger at smaller k. As k goes to zero, the stress approaches

an asymptotic value depending on m.

T

11
The inclusion considered in Paper I has the symmetry about X3 axis

at Equator Points

(also the siress and deformation axis), so o’;S at any point on the equator
remains unchanged. However, the inclusion considered in this study does
not have such a symmetry. So far, the results of o"fl at the equator point
A3 or (0, 0, c) are presented. It is necessary to examine the variation of
OTlthequatordefinedbyxg'* X§=c2. Consider a unit vector, n,
normal to the equator, where n = (0, n,, ny), satisfying ng + ng * 1.
According to Eshelby [2], o’flmtheequatorcanbeobtainedas




R i e
o) = E {leg) *ey) -5ey -5 (eyyny+ejndl (4)

Equation (4) can be written as 0’141 C + C n » where

g R R T 'r
Cl =g E {(ell + ekk) a5 (el + 2e22 )} (4a)
and
g L Y
C2 o E (e22 e33). (4b)

Since 0 < n; < 1, oTll'asamaximnnateitherns=Oorn =1l. Here, n, =1

3 3
corresponds to the equator point A3, and n, = 0 to the equator point A2 or
(0, ¢, 0) (cf. Fig. 1). °§.11 at the equator point A, is then equal to C,- Values
of oj‘1 at A2 for inhomogeneity and plastic deformation effects were calculated.
These are presented against k for various m values in Figs. 10 and 11.
Figure 10 shows the results for inhomogeneity effect. The stress ratio
(o]fl) inh/oA is always negative for m > 1, indicating that (cbldl) inh reaches
a maximum at the equator point A3 under tensile applied stress (oA > 0).
Under compressional applied stress (oA < 0), (crfl)m is maximum at the
equator point A’l However, its magnitude is much smaller than that at A3
for * > 0. When m is less than unity and o > 0, (o), at A, reaches
a maximum, but (c}fl) inn 2t any point on the equator is alway less than that
of dA . Therefore, the stress concentration due to inhomogeneity effect at
the edge of a soft inclusion parallel to the stress axis is deemed insigni-
ficant.

Figure 11 shows (c!M ) at A2 arising from plastic deformation effect.
wrmt}wseresultsmcmpamdmththosemhg. 9, it is found that the

locatxmofanmmmm(on) dependsonthes:gxofe regardless of the
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modulus ratio m. For tensile strain (s:p > 0), the maximum occurs at A3,
whereas (ch)p reaches a maximum at A, for compressive strain (ep < 0).

Again, the magnitude of (orldl)p at A2 is smaller than that at Ay

4.4 Comparison with Previous Results

Results obtained here for a spherical inclusion agree with those
reported in Paper I. For this special case, no geometrical distinction
exists. It should be mentioned here that Tanaka and Mori [3] first
evaluated the plastic deformation effect quantitatively using Eshelby theory.
Originally, they considered work-hardening of composite materials. Later,
Tanaka, Mori and Nakamura [4,5) extended the calculations to decchesion
process of an inclusion in material. The shape of the inclusion considered
included a thin disc parallel to the deformation axis X3 (with k = 0), a
sphere, and a long needle along the X, axis (with k = =),

For a spherical inclusion, Tanaka et al. [4] obtained
X1 - vemed® (5)

A ST 10 p 1
337inh ‘(7 - 5v) +® ~ 10vm  2(1 - 2v) + (1 + Vim

for inhomogeneity effect and

I = (7 - 5\)) L]
(O3 * T T W) + (- 10W (T F Vm £op (6)

for plastic deformation effect, respectively. These are given in our
notation, taking v = v*. Note that their expression for (ags)p has one
obvious typographical error, which is corrected in the above expression.
Our results are in complete agreement withtheirs given in Eqs. (5) and (6).




For an infinitely thin disc inclusion, Tanaka et al. [5] obtained

(0r.). . = (1 + 2’ } oo 7
33’inh (1':‘;§§7 i

or inhomogeneity effect and

2
tor,) = S22V ¥ X e, (8)

p 201 = v°)

for plastic deformation effect, respectively, again taking v = v¥,
Their result for (°§3)p agrees with ours when v is taken as 1/3. However,
the result for (0]3:3)inh diagrees with ours. Apparently, Eq. (7) is

I ) R aA is not satisfied even when

erroneous because the equality of (033 inh

m=1unless v = 0.

5. DISCUSSION

It is known that graphite flakes in cast iron initiate fracture and are
responsible for the low tensile strength of the material. In most previous
studies, the graphite was treated as a cavity (E* = 0) in the analysis of the
stress concentration. However, the elastic modulus and thermal expansion
coefficient of graphite are obviously not zero. Their effects on the
mechanical strength of cast iron can now be analyzed more explicitly by using
our results.

The shape of graphite flake is approximated here to be an oblate spheroid,
which has the aspect ratio of 0.01 to 0.2. The limiting case of nodular
graphite corresponds to k = 1. Two different arrangements for the disc shaped
graphite were considered. One is N configuration, where the broad face of
the graphite flake is normal to the stress axis of uniaxial tension or compres-
sion. The other is P configuration where the graphite flake is parallel to the
stress axis. These are referred to as "N graphite” and "P graphite", respectively.




The maximum stress for decohesion of graphite-iron interface is expected to
be stress normal to the grpahite~iron interface at the polar point B or normal
stresc (parallel to the inclusion symmetry axis) acting at the equator point A.
Three different effects of stress concentrations were evaluated. Young's
moduli of graphite and ironare 20.7 GPa and 206 GPa, respectively. Thus,
we obtain m = 0.1. The magnitude of d” was taken as 10”SE. The amount of
plastic deformation was taken as 1%. It is assumed that the matrix ceases
to allow plastic relaxation below 800°K. The thermal expansion coefficients
of graphite and iron are 1.8 x 107%/0K and 12.0 x 10-6/°K, respectively [6].
This gives the thermal misift strainof el = 5 x10™°. Results of Paper I
were used for the calcualtion of misfit effect. For each configuration of
graphite, the total stress due to three effects was calculated as a function
of k, taking tensile and compressive nature of qA into account. The results
are presented in Fig. 12, where each curve is labeled for the configuration
of graphite flake, the position of internal stress as well as the direction
of applied stress. Here, (P, A) refers to Ulfl at A, and (P, B) to O]]El at B
in this stuly, whereas (N, A), refers to dy; at A and (N, B) to o3, at B in
Paper I. The subscript T or C refers to tensile or compressive applied
stress. Note that stresses are given in terms of Young's modulus of iron, E.
As expected, tensile stress at the edge of N graphite (N, A)T is quite
high under tensile loading and fracture is expected to initiate at the edge
regardless of k. For smaller k, (0:1M )_._1is the main contribution, but

33'mis

(Jgs)inh is also significant as k approaches unity. At k = 0.01, the sum of
3

three effects is 20 x 10 'E, which is five times smaller than (cxgla):.th for a
cavity (m = 0, k = 0.01). At k = 0.1, the sum is 40% greater than (djy),

of cavity. On the broad face of N graphite, (N, B)T is still tensile for




k < 0.45 but its magnitude is lower than that of oA.

Both (N, A)C and (N, B)C
are mostly compressive, so N graphite is expected to be an inactive source for
fracture under compressive loading.

It is most surprizing that both (P, A)T and (P, A)C are positive and
large in magnitude, especially for k < 0.1. This implies that tensile stress
acts at the edge of P graphite under tensile or compressive loading. Low
tensile fracture strength of gray cast iron is thus expected from misfit
effect as well as from inhomogeneity effect, not merely from the latter. Some
plastic deformation in the vincinity of graphite flakes is also expected
because of very high stress level. This contradicts our assumption and in-
validates a part of our calculations. However, general features of the
results are still applicable.

Deleterious effects of graphite flakes are present even under compressive
loading according to the present calculation. Still, the degree of stress
concentration is much less under compression than under tension. This is the
obvious origin of the strength differential effect in gray cast iron [7].
Another obvious consequence is the favorable effect of spheroidization of
graphite (8], as is well ’known industrially. However, th? stress concentra-
tion at the side of a nodular grahite is more than 50% higher than that of an

equivalent cavity.
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Fig. 12,

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 5.

Fig. 6.
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FIGURE CAPTIONS

The orientation of an oblate spheroidal inclusion. Applied
stress, oA, is exerted along the X3 axis.

Internal stress inside the inclusion due to inhomogeneity effect,
(03,)5 /" against k.

Internal stress inside the inclusion due to inhomogeneity effect,
() 1/ against k.

Internal stress inside the inclusion due to inhomogeneity effect,

I :
(033)irm/d‘\ against k.

Internal stress at the equator point A3 on the matrix-inclusion

boundary due to inhomogeneity effect, (o). /o against k.

Internal stress inside the inclusion due to plastic deformation
I .

effect, (ou)p/E*ep against k.

Internal stress inside the inclusion due to plastic deformation
I ;

effect, (on)p/li"t:p against k.

Internal stress inside the inclusion due to plastic deformation

effect, (ags)p/E*‘r:p against k.
Internal stress at equator point A3 on the matrix-inclusion

boundary due to plastic deformation effect, (clfl)p/E-ep against k.
Internal stress at the equator point A, on the matrix-inclusion
boundary due to inhomogeneity effect, (a}); /o against k.

Internal stress at the equator point A2 on the matrix-inclusion
Poundary due to plastic deformation effect, (o’fl)p/zo ¢, against k.
Internal stresses at equator point A and the polar point B of iron
matrix-graphite inclusion boundary. The sum of the three effects
(misfit e = & x 10, inhomogeneity m = 0.1 with o = 1073 + E, and
plastic deformation o 1%) is shown against k for two configurations
of graphite inclusions; N and P graphites. Tensile and compressive
applied stresses are indicated by subscript T and C, respectively.
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Fig. 1. The orientation of an oblate spheroidal inclusion. Applied
stress, oA, is exerted along the )(3 axis.
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